170 research outputs found

    Easy Rigging of Face by Automatic Registration and Transfer of Skinning Parameters

    Full text link
    International audiencePreparing a facial mesh to be animated requires a laborious manualrigging process. The rig specifies how the input animation datadeforms the surface and allows artists to manipulate a character.We present a method that automatically rigs a facial mesh based onRadial Basis Functions and linear blend skinning approach.Our approach transfers the skinning parameters (feature points andtheir envelopes, ie. point-vertex weights),of a reference facial mesh (source) - already rigged - tothe chosen facial mesh (target) by computing an automaticregistration between the two meshes.There is no need to manually mark the correspondence between thesource and target mesh.As a result, inexperienced artists can automatically rig facial meshes and startright away animating their 3D characters, driven for instanceby motion capture data

    Development of a real-time full-field range imaging system

    Get PDF
    This article describes the development of a full-field range imaging system employing a high frequency amplitude modulated light source and image sensor. Depth images are produced at video frame rates in which each pixel in the image represents distance from the sensor to objects in the scene. The various hardware subsystems are described as are the details about the firmware and software implementation for processing the images in real-time. The system is flexible in that precision can be traded off for decreased acquisition time. Results are reported to illustrate this versatility for both high-speed (reduced precision) and high-precision operating modes

    Fast segmentation of range images

    Full text link

    Tensor Algebra: A Combinatorial Approach to the Projective Geometry of Figures

    Get PDF
    This paper explores the combinatorial aspects of symmetric and antisymmetric forms represented in tensor algebra. The development of geometric perspective gained from tensor algebra has resulted in the discovery of a novel projection operator for the Chow form of a curve in P3 with applications to computer vision

    Minimum Partial-Matching and Hausdorff RMS-Distance under Translation: Combinatorics and Algorithms

    Get PDF
    We consider the RMS-distance (sum of squared distances between pairs of points) under translation between two point sets in the plane. In the Hausdorff setup, each point is paired to its nearest neighbor in the other set. We develop algorithms for finding a local minimum in near-linear time on the line, and in nearly quadratic time in the plane. These improve substantially the worst-case behavior of the popular ICP heuristics for solving this problem. In the partial-matching setup, each point in the smaller set is matched to a distinct point in the bigger set. Although the problem is not known to be polynomial, we establish several structural properties of the underlying subdivision of the plane and derive improved bounds on its complexity. In addition, we show how to compute a local minimum of the partial-matching RMS-distance under translation, in polynomial time

    Automatic 3D facial model and texture reconstruction from range scans

    Get PDF
    This paper presents a fully automatic approach to fitting a generic facial model to detailed range scans of human faces to reconstruct 3D facial models and textures with no manual intervention (such as specifying landmarks). A Scaling Iterative Closest Points (SICP) algorithm is introduced to compute the optimal rigid registrations between the generic model and the range scans with different sizes. And then a new template-fitting method, formulated in an optmization framework of minimizing the physically based elastic energy derived from thin shells, faithfully reconstructs the surfaces and the textures from the range scans and yields dense point correspondences across the reconstructed facial models. Finally, we demonstrate a facial expression transfer method to clone facial expressions from the generic model onto the reconstructed facial models by using the deformation transfer technique

    Towards Exploiting the Advantages of Colour in Scan Matching

    Full text link
    © Springer International Publishing Switzerland 2014. Colour plays an important role in the perception systems of the human beings. In robotics, the development of new sensors has made it possible to obtain colour information together with depth information about the environment. The exploitation of this type of information has become more and more important in numerous tasks. In our recent work, we have developed an evolutionary-based scan matching method. The aim of this work is to modify this method by the introduction of colour properties, taking the first steps in studying how to use colour to improve the scan matching. In particular, we have applied a colour transition detection method based on the delta E divergence between neighbours in a scan. Our algorithm has been tested in a real environment and significant conclusions have been reached

    A performance evaluation method to compare the multi-view point cloud data registration based on ICP algorithm and reference marker

    Get PDF
    Registration of range images of surfaces is a fundamental problem in three-dimensional modelling. This process is performed by finding a rotation matrix and translation vector between two sets of data points requiring registration. Many techniques have been developed to solve the registration problem. Therefore, it is important to understand the accuracy of various registration techniques when we decide which technique will be selected to perform registration task. This paper presents a new approach to test and compare registration techniques in terms of accuracy. Among various registration methods, iterative closest point-based algorithms and reference marker methods are two types of commonly applied methods which are used to accomplish this task because they are easy to implement and relatively low cost. These two methods have been selected to perform a comprehensively quantitative evaluation by using the proposed method and the registration results are verified using the calibrated NPL freeform standard

    A Stochastic Algorithm for 3D Scene Segmentation and Reconstruction

    Full text link
    Abstract. In this paper, we present a stochastic algorithm by effective Markov chain Monte Carlo (MCMC) for segmenting and reconstructing 3D scenes. The objective is to segment a range image and its associated reflectance map into a number of surfaces which fit to various 3D surface models and have homogeneous reflectance (material) properties. In comparison to previous work on range image segmentation, the paper makes the following contributions. Firstly, it is aimed at generic natural scenes, indoor and outdoor, which are often much complexer than most of the existing experiments in the “polyhedra world”. Natural scenes require the algorithm to automatically deal with multiple types (families) of surface models which compete to explain the data. Secondly, it integrates the range image with the reflectance map. The latter provides material properties and is especially useful for surface of high specularity, such as glass, metal, ceramics. Thirdly, the algorithm is designed by reversible jump and diffusion Markov chain dynamics and thus achieves globally optimal solutions under the Bayesian statistical framework. Thus it realizes the cue integration and multiple model switching. Fourthly, it adopts two techniques to improve the speed of the Markov chain search: One is a coarse-to-fine strategy and the other are data driven techniques such as edge detection and clustering. The data driven methods provide important information for narrowing the search spaces in a probabilistic fashion. We apply the algorithm to two data sets and the experiments demonstrate robust and satisfactory results on both. Based on the segmentation results, we extend the reconstruction of surfaces behind occlusions to fill in the occluded parts.
    • 

    corecore